
REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
aatherino and maintaining the data needed, and completing and revievvlng the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 121B Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OlulB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE flJD-AfM-y/y'/;

26-09-2003
2. REPORT TYPE

Final Technical
4. TITLE AND SUBTITLE

Intranet Delivery of Simulation-Centered Tutoring

6. AUTHOR(S)
Munro, Allen
Pizzini, Quentin A.
Johnson, Mark C.
Walker, Josh
Surmon, David

DATES COVERED (From - To)
15-04-1998 -15-02-2002

5a. CONTRACT NUMBER

5b. GRANT NUMBER

N00014-98-1-0510

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

6a. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Southern California
Behavioral Technology Laboratories
250 N. Harbor Dr., Suite 309
Redondo Beach, CA 90277
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5660

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

ONR

11. SPONSOR/MONITOR'S REPORT
NUMBER{S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for Public Release: Distribution is Unlimited.

13. SUPPLEMENTARY NOTES 20030930 121
14. ABSTRACT

The need for distance leaming based on advanced simulation centered technical training, including artificially intelligent
maintenance training using DLAG, motivated the development of iRides, an environment for delivering and authoring interactive
graphical simulations and training. iRides makes it possible to transition training materials previously developed using the RIDES
and VIVIDS research products for simulation centered training. Java programs that implement a simulation delivery system work in
concert with authored graphics and behavioral specifications to provide interactive graphical simulations with training for distance
learners. The iRides products were applied to a large-scale training development project on Basic Electricity and Electronics. This
stress-testing of the research products revealed issues that serve to guide future research and development efforts.

15. SUBJECT TERMS
Simulation training, Distance leaming. Advanced Distributed Leaming, ADL, Authoring, Authored training. Authored sunulation,
iRides, VIVIDS, RIDES, DIAG

16. SECURITY CLASSIFICATION OF:
a. REPORT

u
b. ABSTRACT

u
c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Donna Darling
19b. TELEPHONE NUMBER (Include area code)

(310) 379-0844
Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Intranet Delivery of
Simulation-Centered Tutoring

Final Report
ONR Grant N00014-98-1-0510

Allen Munro
Quentin A. Pizzini
Mark C. Johnson

Josh Walker
David Surmon

Behavioral Technology Laboratories
University of Southern California

250 No. Harbor Drive, Suite 309
Redondo Beach, CA 90277

(310) 379-0844
munro@usc.edu

http://btl.usc.edu/

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Final Report:
Intranet Delivery of Simulation-Centered Tutoring^

Allen Munro
Quentin A. Pizzini
Mark C. Johnson

Josh Walker
David Siormon

University of Southern California

Summary

The first goal of this project was to develop a capability to deliver interactive technical
training, including artificially intelligent maintenance tutors authored using DIAG and
the RIDESA'^IVIDS authoring tools. The research products RIDES (Munro, Johnson,
Surmon & Wogulis, 1993; Munro, 1994; Munro, Johnson, Pizzini, Surmon, Towne &
Wogulis, 1997) and VIVIDS (Munro & Pizzini, 1998) are integrated authoring and
delivery software systems for creating and presenting interactive simulation-centered
training environments. These systems were used to create DIAG (Towne, 1996), a tool
for providing intelligent instructional guidance during simulation-based maintenance
troubleshooting training.

Two major technical advances were required to facilitate the eventual transition of the
RIDES, VIVIDS, and DIAG research products to meet Navy training requirements. First,
it was essential that the software should be able to nm on Windows systems, and ideally
other operating systems, as well.^ It was necessary that the new system be platform-
independent, so that it could be delivered on a variety of platforms found in Navy
environments, including all modem Windows operating systems, as well as Unix and
Linux. Second, the increasing importance of intranets and of the Internet for military
training called for the capability of on-demand distributed learning. A network-
deliverable implementation of a simulation-centered learning platform was called for. If
this distance learning software could be made compatible with the RIDESA'^IVIDS
system, then previously developed training applications, such as DIAG, could be made
available as distance learning modules.

This is the Final Report on research conducted under Office of Naval Research Contract No.
NOOO14-98-1-0510, Intranet delivery of authored simulation-centered tutors.
The original RIDES project (supported by Air Force Contract No. F33615-90-C-0001, which included
Office of Naval Research co-sponsorship) had requirements that could be provided only by Unix
operating systems when that effort began in 1990. Hence, RIDES and its immediate successor, VIVIDS
were developed using Unix and a Unix-only application framework. Interviews (Linton & Vlissides,
1989; Vlissides, 1990).

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

A new simulation training delivery system, to be called iRides—for Intranet RIDES, was
a target research product for this project. iRides was to have the following two major
characteristics:

• Network-safe intranet access to simulations for training
• Ability to deliver simulations authored with RIDES/VIVIDS

- including the ability to run DIAG, the most complex application of RIDES

Development of iRides required a completely new implementation of a RIDESA'^IVIDS
style simulation system, because the C++ code of VIVIDS could not be directly adapted
to support intranet delivery. It would be necessary to use the Java programming language
to create the intranet-deliverable iRides simulation delivery software. (The feasibility of
this approach had been demonstrated in a prototype simulation player, called jRides,
which was developed in Java in 1997. jRides implemented the expression syntax of
VIVIDS, and a subset of its simulation language fimctions, using a rudimentary approach
to simulation graphics.) Although the transition to a complete implementation in a new
programming language imposed a significant design and implementation workload, this
necessity also presented an opportxmity to advance the state of the art by introducing
additional capabilities into the new simulation delivery system. These capabilities are
described below in the Results section. In brief, however, these enhancements included

• Additional data types for simulation attributes
• An improved, extensible simulation language with flexible expression syntax
• Support for cloned simulation objects, in order to provide simulations that have

on-the-fly creation of new objects
• Improved graphics capabilities
• Simulator support for interactive debugging in iRides

In order to run original VIVIDS simulations, iRides had to be able to read files produced
by VIVIDS. The original VIVIDS file format was a complex binary format based on a
commercial library for representing complex reference relationships. There were several
problems with continuing to use this file format for the new iRides research product. One
of these was that binary file formats effectively render all authored information vendor-
dependent. Future computing systems would not be able to even display the content of
such files if those systems did not support the authoring tools that created them. There
has been a long history in the aviation commimity of large-scale training products
becommg obsolete, not because the content of those trainers became outmoded, but
because it became impossible to buy computers that could run the antique operating
system and software of those systems. Use of a himian-readable text format would
improve the chances of costly content development remaining usable for the foreseeable
fixture. VIVIDS itself was modified so that it would be able to output previously authored
simulations in the iRides text file format.

The first goal of the project, implementing a multi-platform, network-delivered
simulation envirormient for training that could deliver applications as complex as DIAG,
was achieved very well during the course of this project.

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Authoring iRides simulations in the native iRides context, rather than only in VIVIDS
was a second major goal of this project. Native authoring w^ould make it possible to
create new distance learning simulations without having to make use of VIVIDS and the
Unix platforms on which VIVIDS runs. New editor interfaces were developed in Java for
the iRides environment, including object lists, object data editors, attribute data editors
(including constraint editing), and event editors. This simulation behavior authoring
system was in a very usable state at the completion of this project. It has since continued
to be improved under Future Naval Capability (FNC) ONR funding, as is briefly
described at the end of this report.

A third major goal of this project was providing support for the transition of BEESIM
basic electricity and electronics lessons developed with classic VIVIDS to the iRides
environment, and, later in the project, to contribute to the BEESIM development effort.
This effort revealed a number of problems, including the need to anticipate expectations
in the computer based instruction community that all authoring systems must make use of
a page-turning model of presentation, the need to make notions of 'lesson' and 'course'
more flexible, and the difficulties of implementing an entirely new training delivery
framework, based only in part on iRides, in a very short period of time. Certain of the
lessons of this effort have resulted in improvements to later versions of iRides, which are
still under development at the University of Southern California. These impacts are
briefly described in the final section of this report, Continued iRides Development.

Background

Modem computer-based learning environments can benefit from action centered training
techniques. In action centered training, a tutorial entity observes student performance in
an action context and carries out pedagogical activities in that context. Action contexts are
often simulations, but other action contexts are possible. In embedded training, for
example, complex equipment systems based on computers can serve as action centered
learning contexts. Interactive simulations and embedded training systems can help to
ensure that job-related performance skills—as opposed to mere test-taking skills—^are
acquired as a result of training.

Many earlier research projects on advanced tutoring systems have incorporated
simulations that were developed using low level tools (i.e., programming languages) to
develop both the tutorials and the simulations. Reliance on such low-level development
techniques naturally makes simulation-centered tutoring extremely expensive. It can also
make it very difficuh to determine what features of a particular tutor are responsible for
its efficacy (or lack thereof). Authoring systems, by ensuring a uniform quality of low-
level instructional interaction and by providing easily edited and modifiable tutorials and
simulations, can make it possible for developers to experiment with different high-level
approaches to training in a given domain.

Consider an environment that is designed to help aircraft mechanics learn how to carry
out their jobs. One module might help students learn about an aircraft's AC Power

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

System. In addition to presenting textual, audio, video, and static pictorial resources that
present the appearance, functions, and use of the AC Power System and its components,
the learning support environment could also make use of an action context such as the
interactive graphical simulation depicted in the figures below. This simulation of a
cockpit control panel can be a behaviorally realistic environment for demonstration and
practice.

There are two separate issues to be aware of in this example. First, what should be the
characteristics of the simulation? Second, how should the training component of the
learning enviroiraient be able to interact with the simulation to facilitate learning?

An interactive live simulation—an action context for learning.

A live simulation is one that permits
arbitrary sequences of actions by the user.
In moderately complex simulations, there
may be billions of possible action
sequences that users can follow in using
the simulation. Each action that a user
takes causes a set of effects analogous to
those that would be observed in a real
device. Consider the aircraft AC Electric
Power control panel shown at the right.
This panel is used to control AC power
systems on certain naval aircraft.

B:,Kn:c no

'.:.-*!!

© O

Figure 1. AC Power Simulation, Initial State

If the user clicks on the lower half of the
External Power toggle switch, that switch
will be put into the Reset position. This
switch position activates a lamps test
circuit that causes all the lights on the
panel to be yellow.

To actually use the AC power system, it
is necessary to put the External Power
switch in the On position, and to put both
the left and right generators on, and both
the left and right hand bus switches on.

SLKmic ns

'3>i

orr/BUit I
1

I BDX err I I LZZJ'
sera ,

Figure 2. AC Power Simulation

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

In a live simulation, the results of any
sequence of actions will be correctly
displayed. In the picture at the right, the
user has turned the External Power switch
on and has engaged the left hand
generator and bus, but has not turned on
the right hand generator and bus. No
matter what sequence of operations is
carried out, this simulation shows the
consequences at each stage of the process.

KH T- IL .»

u

Figure 3. AC Power Simulation

Action-centered training. In action-centered training, a training system can monitor
student actions, can provide instructional feedback in the action context, and can carry
out actions itself The three figures below illustrate several types of low-level interaction
that a coach can have in an action environment. These interactions include monitoring
student actions, controlling simulations to undo student actions, giving students
informative feedback in the context of the simulations, demonstrating actions in the
simulation, and monitoring states of the simulation.

Monitoring actions. An action-centered
trainer must be able to observe a student's
manipulations in the action context. It
must be able to evaluate actions. When a
correct action is taken, it may be
appropriate for the training controller to
give the student informative feedback or
encouragement. When an incorrect action
is carried out, it may be useful for the tutor
to inform the student that the action was
not correct.

Control—^Undoing student actions. In
addition to providing feedback about
incorrect actions, it is sometimes
necessary for a tutor to negate the effect of
a student action during training. If actions
are not 'imdone', it may be difficult or
impossible to step the student through the
proper sequence of actions that is to be
learned.

■■^^^w^'i§m%

Figure 4. Monitoring Actions and Controlling a Simulation for Training Purposes

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Feedback in the action context. In order
to draw a student's attention to particular
objects or elements in an action context
such as a simulation, it may be helpful to
graphically highlight an object. In the
figure at the right, the left hand generator
switch is made prominent by flashing
rapidly between two distinctive colors.
The simulation view carries out this
highlighting process when directed to do
so by a training controller object.

Demonstrating actions. A tutor
sometimes needs to carry out the steps of
a procedure in order to teach a student
how to perform the procedure. In Figure
5, the student is first prompted to indicate
that he understands what is being referred
to. Then the tutor directs the action
context to emulate the desired action.

BiKTSic rm

©

ir\ Vrrl-ral -^f.

5fMllifU||d^tM«nlnL

Tk> nhnd pow UN liph h CM

WfMll«4WlKtMnloiiMklil>NaKH
Srini Ik t«U«iJ«d<nJnL

I
Figure 5. Instructional Feedback in a

Simulation Context

Monitoring states. In addition to
monitoring discrete student actions, a
trainer must also be able to monitor a
simulation or other action context for
defined states. That is, when a particular
state occurs, it may be appropriate for the
trainer to detect that state occurrence and
to respond instructionally. In the figure at
the right, the trainer first directed the
student to 'set up the right generator and
bus'. It then allowed the student to carry
out any actions the student chose. When
the target state was achieved, the trainer
detected the state and gave the student
feedback to indicate that the desired state
had been achieved.

O

I 8ER an I

&
orr 5s.'

CMNd

a,TU,«,M,ii.t«^f«*^^ffii«:^^..

■aaoiHi

Figure 6. Monitoring Simulation States

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Components of an Action Centered Learning Environment

As a result of many years of experience in action-centered learning contexts (Munro,
1994; Munro, Johnson, Pizzini, Surmon, Towne, & Wogulis, 1997; Stiles, McCarthy,
Munro, Pizzini, Johnson, & Rickel, 1996) we have developed a consistent organizational
system for viewing all such environments. From the student user's viewpoint, there may
be four major visible types of components in an action centered learning system.

• The visible action context. In the case of simulations, this type of component is
one or more views of the simulation. In the figures above, the views of the cockpit
panel are this type of component.

• Presentation interface. The window with instructional text (In Figure 6, the last
line says "OK. That concludes the procedure for starting up the AC generator
system.") is an example of a presentation interface. Other examples of presentation
objects include video players, audio presenters, and text-to-speech presenters.

• Commands. The buttons labeled Stop, Don't Know, and Continue are examples of
commands. These are interface objects that make it possible for a student to carry
out meta-interactions, such as asking for help or quitting a session.

• Entries. A coach sometimes must ask a question of a student that
cannot be answered by carrying out an action in the action
context (such as the simulation view). Interfaces for gathering
answers to questions are called Entries. The menu at the right
contains a set of choices to be offered to a student when the
question is posed, "What is the value of the External Power
Available light" in a simulation context such as that shown in
Figure 2.

The invisible components of an action centered learning environment. In addition to
the visible components, an action centered learning environment also has important
invisible components. These include:

• The Controller. The Controller component is the tutorial object that controls the
course of the learning experience. A Controller makes use of the other components,
deciding whether to respond to commands, directing presentations, and monitoring
and affecting the simulation (or other action context).

• The Behavior Model. The component of the action context that determines how
the simulated system works is called the Behavior Model.

• The Student Data Framework. Data about the student is maintained for the use of
the Controller. The Controller can direct that information be stored and can retrieve
information about the student for use in deciding how to proceed with the learning
experience. The iRides system includes a mechanism for storing arbitrary data
during training. This means that it does not at present include a specific type of
active student model, although the architecture could support the inclusion of such a
component.

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

While not every action centered learning system has all of these components, this broad
design may provide a useful perspective for analyzing or designing the structure of such
systems.

Instruction in thie Context of Beiiavioral l\/lodels

One of the key concepts in VIVIDS is that instruction takes place in the context of an
authored graphical model of a particular (usually complex) man-machine system that
represents all or many of the relevant characteristics that are to be learned. For example,
if the domain is the operation of a certain item of medical equipment, then the
appearance, behavior, and proper usage of that equipment is the domain to be learned.
Figure 7 shows a student environment with two windows open. The lower window is the
student instruction window, where instructional text and remedial directions are
displayed. The upper window is one of several windows in this simulation that contain
depictions of the domain of interest—^here, a pulse oximeter. Simulation scenes, such as
the one with the title "Pulse Oximeter" in the figure, provide graphical models that are the
context for all instruction in VIVIDS. Many elements of instruction can be automatically
generated by VIVIDS because they are developed in the context of a structured domain
model.

TM" Pulse Oximeter

Sa02% Pulse

ONAIFF
92 4
m

DISFI.AY
LIGHT

48

AT.AKM
SELECT ^ ^

S6
69 CHG ALARM

^ Purse
Teg

<BPM)

W 96 %
strong

IrwtrtietVffl^ '-^■T'^i^J]
stop I Pont Know I D-.. i.f,' CJfJ4e I ■

Begin the exercise Reacling_lndlcators.

Try evaiuating tlie state of eacli of the indicators.

What does Patient Pulse Rate indicate?
Cilclcthe mouse on the indicator.

Figure 7. A Student View of Instruction in the Context of a Graphical Model

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Authors can build complex graphical models by pasting simulation objects into their
scenes. They can also draw objects directly onto the scenes, using a palette of drawing
tools, and can specify rules that control the values of object attributes. The finger in the
figure above is one such object. Authors can open an object data view of the object, such
as the one shown in the figure below. An object data view of an object shows its name,
together with a list of its attributes with their values and their rules, if they have any. In
this figure, there is a rule for the attribute named pulse. The present value of this attribute
is determined by the rule, which refers to the attribute of another object.

i

finger — Object Ma iLi
View Edit Attribute

Path -rout.

Attributes J Alphabetical

p^ie~~'~"pS'~'pyreSbrr
Nsibratj'

J Location

J3c?te
Rotation

Events

true
[274,2721
iP.5,0.5]

.Front .Bulsesetter .readina .value I'

J Alphabetical

Figure 8. Object Data View for a Graphical Object

Some attributes directly control the appearance of graphical objects. When the values of
such attributes are changed, objects may disappear, move, stretch, rotate, or imdergo
other visible changes.

The iRides Simulator

Constraint-based programming languages provide a number of benefits over conventional
declarative languages. Foremost among these is the elimination of much of the burden on
the programmer to determine the flow of control of program execution. Constraints are
pieces of code that are executed when values they refer to change. In conventional
programming languages, the programmer is responsible for determining the order of
execution of program statements. In a pure constraint language, there is no "order" per se:
The system of constraints represents a steady-state model of the system being simulated.
When that system is perturbed by outside influences such as mouse or keyboard input,
the constraint-firing mechanism in the execution environment is responsible for
determining when each constraint must be evaluated and in what order. Constraint-based
languages have a number of advantages, including a reduction in the complexity of the
programming task, because flow of control is not ordinarily the responsibility of the

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

constraint author. A constraint-firing mechanism in the constraint execution envnonment
is responsible for determining when each constraint must be evaluated (executed).
Several constraint-based programming languages have been developed (Leler, 1988;
Munro, Johnson, Surmon, & Wogulis, 1993; Munro, 1994). Examples of constraint-based
interactive graphical environments, include Sketchpad (Sutherland, 1963), Thinglab
(Doming, 1979), and a spreadsheet-based graphics system by Wilde and Lewis (1990).

Constraint-based programming languages, like other programming languages, can be
extended through the definition of new fiinctions and procedures. For example, if a
programming language does not have a square root fionction, a programmer could write a
new sqrt 0 function in the constraint language that returns the square root of a numeric
parameter.

Interactive Representations Controlied by Authiored Constraints

Some systems for creating interactive graphical environments provide a constraint-
centered approach to authoring behavior. In such systems, rather than specify what
should take place when crucial events happen, an author specifies what relationships are
to endure among values in a system. An example of a constraint-based environment with
one-way propagation of effects is a spreadsheet authoring application, such as Excel. An
author specifies that the value shown in cell D is the sum of the values in cells A, B, and
C. When any of these values is changed by a user, the value of D is also changed. The
author does not have to specify that the event of a value change in A or B or C should
invoke the computation of D.

In VIVIDS and iRides, constraints are written as expressions. Whenever any value that is
referred to in a constraint expression changes, the expression is evaluated and a new
value for the attribute is determined. It is not necessary to explicitly state that an
expression must be re-evaluated whenever the a value referred to in the expression
changes. Authors need not concern themselves with when a value needs to be recomputed
if that value is determined by a constraint.

Results and Discussion

Network-safe access to simulations and training

The selection of the Java programming language, together with the utilization of both
applet and Webstart technologies, helped ensure the implementation of network-safe
access to simulations and training in iRides. Suppose that iRides had been implemented
as an independent program—one that was not constrained to operate within the Java
environment but one that instead had fiill access to the operating system interfaces on the
students' computers. When that program was downloaded along with a simulation
specification, the authored simulation system would have access to some powerful and
potentially dangerous capabilities on student machines. An inimical or incompetent
simulation author could conceivably write a simulation that could damage files on the

10

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Student's computer. Because Java forbids unsafe access in the context of ordinary applets
and Webstart applications, student computers are protected from these problems. Of
course, there may be cases in which it is necessary for a training application to modify
local files. There are two primary ways that this can be accomplished using iRides. One
is to make the iRides training object a Trusted Applet or a Trusted Webstart appUcation.
This can be managed by the system administrator at the student's site. The second way is
to use an application version of iRides, which has full application prerogatives on student
stations. This approach is presumably acceptable at school sites, where technica,! support
personnel and training vendors can test and vouch for the beneficence of the training
simulations that will be installed.

Ability to Convert Simulations Authored in RIDES and VIVIDS for iRides

Numerous RIDES and VIVIDS simulations have been exported to iRides file format and
tested in the iRides application. These include the B2 Landing Gear simulation, the
Shipboard High Pressure Air Compressor simulation, and the simulation of the Gas
Turbine Engine Control System on Arleigh Burke class destroyers, which was developed
under an earlier Virtual Environments for Training project. In most cases, no changes
were required to obtain identical behavior and virtually identical visuals in the iRides
versions of these simulations.

Conversion of DIAG training to iRides

The most thorough possible test of the iRides simulation delivery system was the ability
to deliver the DIAG intelligent tutoring system. Almost every capability of the
RIDESA^IVIDS simulation system is utilized by DIAG and must be supported in the
iRides delivery environment. However, in order to support DIAG it was not necessary to
re-develop all the RIDESA^IVIDS instructional system, because DIAG makes use of
simulation graphics and the simulation behavior language to deliver instruction.

Early testing of DIAG with iRides revealed that DIAG made use of one aspect of
VIVIDS that is neither part of the simulation system nor part of the lesson control system.
That aspect is the VIVIDS Knowledge Unit mechanism. (Knowledge units are networked
text bodies with indexing attributes and links that attach them to elements of the
simulation.) Features originally not planned for iRides were implemented in order to
support those characteristics of DIAG that made use of VIVIDS knowledge units.

Conversion of autliored BEESiiUI lessons to iRides lesson structures

Initial content development for the BEESIM course was done by third-party instructional
developers using VIVIDS. However, the intent was for those lessons to be deliverable
over networks on a variety of computers. It was therefore necessary to develop a way to

During the period of the work reported here, a parallel project supported primarily under an extension of
U. S. Air Force contract F33615-90-C-0001 funded the development of an instructional delivery system
that works with the iRides simulation delivery software.
A second implementation of DIAG has since been developed using Toolbook. See Towne (1998,1999).

11

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

convert those VIVIDS lessons into equivalent iRides lessons. This was done by adding to
the VIVIDS code the ability to output the VIVIDS lesson as a file that in the format that
iRides uses for lesson specifications. In addition to being able to execute a Save
command to save the VIVIDS simulation and lessons as a single (binary) classic VIVIDS
file, the author can now also save the simulation as an iRides structured text file and save
the lessons as an iRides lesson file, that is, as an LML file.^ So, in order to run the
previously developed BEESIM course in iRides, a VIVIDS author needs to

• save the simulation in iRides format (a .jr file)
• save the lessons in iRides format (.1ml files)
• copy these files into the appropriate directory or directories
• make the standard Java call to start running a lesson

The conversion vwites out to file a standard header section for an LML file. Then, for
each part of the VIVIDS lesson (e.g Freeplay, Present Text, Find Object), it writes out a
chunk of LML code that would behave the same way as the VIVIDS segment. Initially
this produced very large LML files, which were difficuh to read and debug. This
observation motivated additional enhancements in later work described in the section
Continued iRides Development.

Enhancements to the iRides Simulator

New data types

In VIVIDS, there were six types of attribute values that were available to the author:
number, logical, text, color, point, and pattern. It became apparent some time ago that
some types of simulations were very difficult to build when restricted to these value
types. Consequently, imder this contract, two new data types were implemented: arrays
and object references.

Introducing arrays actually simplified the data types of iRides. It was no longer necessary
to have separate Point and Color value types for example, because they can be treated in
iRides as two-element and three-element arrays of numbers. By avoiding special data
types like 2_D_Point (for representing locations on two-dimensional surfaces) and
3_D_Point (for expressing locations in three-space), simulation code can be made more
general. Instead of using a specific 2_D_Point data type, a simulation could be built using
a two-cell array, and instead of a specific '3_D_Point or 'color' data type, a three-cell
array could be used. Further, there were some simulations written using VIVIDS that
really needed arrays of other sizes; the implementation of these simulations vdthout
arrays was extremely convoluted. Generalizing fiirther, the individual cells of an array
can be filled with any of the data types, not just numbers, including arrays. The only
restriction is that all cells of an array must be of the same type—all numeric, or all text,
etc.

' Saving lessons in the LML file format was funded primarily by the Air Force contract F33615-90-C-
0001.

12

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

It was often found in writing a simulation that the easiest, most efficient, and least error
prone way to write it would have been to have references to objects as a data type. An
example would be if you wanted to perform some operation on several numeric attributes
of an object. It was possible to do this in VIVIDS, but it was painful for the author.
Moreover, if the name of the object was later changed, none of that code would work any
more. But if you could set some attribute to have the value of the reference to an object,
then writing that code would be greatly simplified, and if the name of the object was
subsequently changed, the related rules would not be affected. iRides now implements
attributes so that their values can be an object reference; also the value of an attribute
could be an array of object references.

Extensible simulation language

In VIVIDS it was impossible for the author to add a new fiinction or procedure to the
programming language. Take for example the fiinction 'cubeRoot'. VIVIDS did not
implement this fimction. An author could implement this within one VIVIDS simulation,
but it would not be available in other simulations. If 'cubeRoot' was needed in several
simulations, it would need to be written within each one. The only way to make that
fimction vmiversally accessible would be to modify the source code of VIVIDS and
recompile it, an onerous task and one that would only be possible if the user had access to
the source code. Moreover, since VIVIDS uses an interpreted constraint language, such a
user-defmed fimction would typically run much more slowly than the core 'native' set of
fiinctions and procedures of the language. This is true because the body of a user-defmed
fiinction will itself be interpreted, while the native fiinctions of the language will be
executed from a compiled representation. The structure of the iRides simulation language
now permits programmers to extend the set of'native' fimctions of the iRides constraint-
based language. So now a programmer could write a new cubeRootQ fiinction that
returns the cube root of a numeric parameter. This makes it possible to develop faster,
more efficient routines. These new user fimctions become part of the language. In fact,
the standard iRides fimctions are defined in exactly the same way, and they are invoked
in precisely the same way as the core set of fimctions. Unlike many interpreted
simulation systems, there is no execution penalty to this flexibility, since the user
functions are compiled code, not interpreted code. iRides has several techniques that
together support authored simulations with the 'native' extensibility of constraint-based
programming languages in the context of program execution envu-onments, such as Java,
that support reflection. These innovations are:

1 ControlUng representational objects with an interpreted constraint language,
2 A method for adding 'native functions' to such an interpreted constraint language,
3 A technique for specifying the number and data types of the parameters of a

user-defined constraint language's fiinctions and procedures, and
4 A method for specifying the external triggers of user-defined constraint language

fimctions and procedures.

When a user wishes to extend the constraint programming language with a new fimction,
he or she must create a new class derived from the constraint language fimction base
class. This derived class must specify the behavior of the new fimction by overriding the
computeO method.

13

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Object templates and clones

In some VIVIDS simulations it was desirable to create a set of similarly behaving
objects, for example, each of the objects would have its own location, but the movement
of all the objects might be governed by the same rule. This could be done by creating one
object then making copies of it and modifying the location of each of the copies. A
problem occurred if the author later decided that the rule governing movement needed to
be modified; it then became necessary individually to edit the movement rule in each of
objects. It became clear that a notion of object templates and clones would be useful; this
was implemented for this contract. The process the author can now use is to create one
functioning object, complete with behavior rules, and then define a template based on
that object. Then clone objects can be created using that template as a basis. Each clone
inherits the rules specified in the template. Then if a rule in the template is later modified,
the corresponding rule in each of the clones is automatically modified in the same way. If
an attribute of a clone does not have a rule specified by the template, a rule can be v^itten
for that clone, and the other clones v^U not be modified in a parallel fashion. Also, if a
clone attribute does not have a rule attached to it, its value can be changed at will. Using
these mechanisms a set of similarly behaving objects can easily be created and modified,
but the clones can be individualized to some extent by means of their own private rules
and values.

Graphical improvements

Several major new graphic features were developed for iRides under this contract,
features that were not present in VIVIDS.

• Full support for alpha-channel transparency, including animating transparency
{i.e., fading in and out).

• Gradient support, both cyclic and non-repeating.
• Support for full-color JPEG format images, as well as the older GIF format.
• Support for textures (using an image to fill an object, instead of a solid color)

using the above image types, for all shapes.
• TrueType font support.
• Full antialiasing, for both shapes and text. For performance purposes,

antialiasing can be turned on and off for shapes or text independently.
• Scenes are now scaleable, so zooming in on an object or area is now feasible.

Textures, fonts and transparency in particular are the three most important advances.
With these three new features, many new graphical effects are available that were either
very difficult or simply impossible before can now be employed in iRides simulations.

Simulator Support for Interactive Debugging

VIVIDS included a runtime interactive debugger. A stepping debugger can be a very
useful authoring aid, because it allows an author to trace the execution of the constraints
and events of a simulation in a step-by-step manner. The author can also test for the
values of attributes and expressions during the execution sequence. These capabilities

14

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

have been found to promote the rapid development of accurate and predictable behaviors.
During this project, 'hooks' were introduced into the simulator to support debugger
notification and the process of stepping through a simulation's rules under the control of
the author. A debugging interface was designed that would introduce additional features
to improve the usefiilness of the simulation debugger in iRides. In particular, the new
debugger would support three new features not available in VIVIDS.

• Stepping into author-defined event functions. In many cases, authors do not need
to see the step-by-step execution of the statements of a well-defined event body
that has already been thoroughly tested. Introduction of a Step Into command
makes it possible for authors to step over their reusable behavior components
specified in events under ordinary circumstances.

• Stepping out of event functions. Sometimes an author wants to step into an event
while tracing a simulation in order to observe a portion of its execution. Once the
statements of interest have been executed, the user can choose Step Out to
complete the remaining statements of the event without stepping through them
all one-by-one.

• The evaluation of arbitrary expressions. In classic VIVIDS, an author would
have to create dummy attributes and give them constraint rules in order to
evaluate arbitrary expressions. A special expression evaluation interface was
designed for entering and evaluating arbitrary expressions during the debugging
process.

This design and the underlying implemented features were rapidly exploited in follow-on
work on the iRides system. See Continued iRides Development, below.

Editors for Authoring Simulation Behavior in iRides

A view of the major editors of the iRides authoring application is shown in Figure 9. This
Java application can run in all the modem Windows environments (Windows 98 and
later). In the application version, authors can have access to the internal behavior data of
a simulation, which they can modify on the fly. In Figure 9, the leftmost window is the
top data view of the behaving objects of an iRides simulation. This is a hierarchical list of
objects and the scenes that contain them.

Each scene contains a group of behaving objects, and those objects themselves may be
groups, containing other objects. An author can open objects in the list to view their
component objects. Any object can be selected at any level, and an object data view can
be opened. The lowest window in Figure 9 is an example of an object data view. This
object is named Readout and is part of the CurrentReadout object on the Visualization
scene. Every object has a number of attributes. The rightmost window is a data view for
an attribute named Current that is part of the same Readout object. The attribute has a
rule that determines its value. This rule can be modified in the data attribute view. As
soon as the Accept button is pressed, the rule is parsed and formatted to reflect the
parser's understanding of the behavior specification. At the same time, the simulation is
updated with the new rule, and the interactive behavior of the simulation will
immediately reflect the new or revised rule.

15

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

(^file.7D./aiBV/nv/demo... HBH

VTieM £dit Tranplate Simulatian KSAttiibute

®- C3 DeviceView

®-(l!]sys

9 C3 Visualization

9 Il3 CurrentReadout

&-II3 Readout

Q A:Location

D AlMaxC;

n A:MinCi*
r\ . r, . J view Edit Attrttaife EwBi*
LjAiRotatli - .

Q AiScalewame 'Vlsu»li2ationCurrentReaSoutReadout

D AMsibil
_ ^^rr,^ „ Cfoneaf Template
®-(_J EMF_Sourcy

©- ll!!l guide tottribulBS

View EdK

Path ivisuaiizatlon.CurretitRsadout

Kams CiUmA

i^alue £

ft/ate iast stit i!^ irslatian
? ~ ■""■

RKlafion

»■ C3 KnifeSwitcb_
«>-C3PowerMetei-ocalon

L

®-[l3Resls1_set

®-C3 Resistor

©■C3voltaae_se!

Rotation
Scaie
TextCqIox
TextHelght

0

18
TexlValue

: TexIWidtti
vi'sibllity"

'^e|it; O Pauss

if .Visualization.KnifeSwitch.state - "closed"
then

ro«iifl(100*(.Visua2ization.Volta5re_setter.roteHtialDi« /
.Vis!ializatio25.Sesist_setter. Jesistance))/100

else
0

"2.0QA" :format('%A", FormatNumberr.'T.faise, 3,2, Visualization
0_
itrue

Figure 9. The Behavior Authoring Interface ofiRides

Authors can us the File menu's Save and Save as... commands to save the entire
simulation specification file, retaining any changes made using these editors.

Support for BEESIM

Phase 1: Serving as a Resource to the BEESIM Designers and Authors

After more than a year of development by a CBT vendor, the first author was given the
opportunity to serve as a resource to the design and development staff of that company
who were working on the BEESIM project.

Several challenges to the success of the BEESIM goal became evident, including these:
• The third-party developers of BEESIM made unexpected uses of VIVIDS

features in order to create page-turning user interfaces, rather than the more
normal (for VIVIDS and iRides) teaching-in-the-context-of-a-simulation
interface. They also developed some specialized assessment interfaces that were
not at all the originally intended type of application for VIVIDS. These authoring
practices made the transition to iRides more difficult.

• Some computer programmers on the third-party BEESIM development team
apparently did not understand the ability of the simulator to automatically
maintain constraint relationships among attribute values. They were drawn to
recreate features of the simulation engine using the VIVIDS simulation
language. Confiision and inefficiencies resulted.

• The VIVIDS structure of 'courses' and 'lessons' did not match well with the
uses to which simulation was put in BEESIM. In particular, the detailed design

16

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

of BEESIM sometimes called for the use of a succession of simulations in a
single lesson. Classic VIVIDS could support only one simulation for a lesson. As
a result, many small lessons had to be stitched together with the VIVIDS
'course' mechanism in order to create a single lesson of thirty minutes or an
hour. This result stimulated the later development in iRides of the capability to
close a simulation and open new ones within a lesson. In addition, a scalable
approach to pedagogical structure was added to iRides, as is described in the next
section of this report.

• Some BEESIM lessons contained multiple copies of complex behaving objects
on different 'pages' (different parts of the 2D simulation world). More
experienced VIVIDS developers might have moved and reconfigured the objects
for use at different points of the lesson, using standard VIVIDS features. As a
result of the explosion in behavior rules (a complete set for each such object),
VIVIDS lessons in BEESIM sometimes bogged down, and crashes often resulted
due to data reference errors. This was another inducement to the original
BEESIM developers to divide lessons up into very small, more reliable chunks.
(iRides, which makes use of the automatic recovery of unused memory in Java,
does not suffer from this fragility.)

These findings led to a number of redesign decisions in iRides. For example, in order to
support larger lesson structures, iRides was redesigned to support closing and opening a
succession of simulations within a single lesson. It was also redesigned to support
marking sub-lessons as complete and suitable for purging from memory. These features
permit the development of large lessons that need not impose very large memory
demands on the student's computer at run time.

Phase 2: The BEESIM II Project

In the last six months of this project, an experimental extension of the iRides system was
undertaken in an attempt to implement a new set of lessons about circuit theory for a
Basic Electricity and Electronics course. The original plan for the USC effort on
BEESIM2 was that a subset of the required simulated equipment lessons would be
developed using a General Analysis product called Re Act. The project was being
coordinated out of NAWC/TSD, coordinating the efforts of the original third party
BEESIM authoring team, the pedagogy consuhant Henry Halff, and the USC team. Our
NAWC/TSD project coordinator determined that a higher priority was to come up with a
new, more dynamic approach to teaching circuit behaviors in the context of simulations.
(The third party authoring team undertook the completion of the required simulated
equipment lessons.) The design of this new software system was developed by Henry
Halff (2001). The goal of this design was to provide effective web-delivered lessons on
electric circuits. These lessons were to be driven by authored specifications of several
types, and were to integrate simulation and instruction in an effective way.

Halff s plan called for the use of a progression of models of circuits. It employed both
qualitative and quantitative reasoning approaches, and it sought to contextualize learning
in realistic circuit contexts. The student interface was to provide a number of tools to

17

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

support self-directed learning and self-help in the context of assigned tasks. Four major
types of task environments were envisioned.

• Directed exploration in the context of breadboard simulations
• Interactive visualizations for explaining or clarifying concepts
• Working with on-Une technical manuals
• Applications—^Answering questions about real devices that exemplify the

characteristics of the illustrated circuits
A variety of activities were to be assigned in these learning contexts.

Specification based training is
accomplished by using a delivery system
that can read the specifications and deUver
interactive training based on them. The
delivery system envisioned by Halff could
not be the standard iRides system alone,
because the specification formats he
prescribed were not simply the two
specification formats of iRides (the
simulation language format and the LML
training specifications).

Authoring Tools:
Database Editors
HTML Editors
Grapiiic Editors
VIVIDSfiRidcs

Courseware
Specification

Delivery Frameworlc:
Database Programs

Scrvlets
HTML Browser

iRides

Student-Courseware
Interactions—^Runtime

Figure 10. Several Types of Specifications

The many specification formats of BEESIM2 were to be these
1 1^ 1

Format Uses in BEESIM2

iRides simulation files (.jr) Breadboard simulations
Interactive visualizations
Certain applications

HTML Forms Structure of problem sets

Problem Data (Type of database table) Content of problem sets

Exercise control specifications (in LML) Conduct (presenting, judging,
remediating) of exercises

Exercise Data (Type of database table) Content of exercises

Prerequisite Network Data (Type of
database table)

Adaptive lesson selection presentation

Class enrollment (database table) Login interface

As can be seen from the hst of learning contexts shown in the Uses column of the above
table, many delivery mechanisms had to be developed to realize the Halff design. Once
these delivery mechanisms were developed and tested, the databases and other
specifications could be populated, and the BEESIM2 trainer would be a reality.

Delivery Mechanisms for BEESIM2^

' This section is adapted from Halff (2001, personal communication).

18

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

Adaptive lesson selection

The delivery of the adaptive lesson selection view was accomplished by creating a
dynamic web page driven by servlets, written in Java, resident on the web server. The
servlet code accesses two kinds of data: the lesson prerequisite table and the record of
this student's experience with each lesson. Clicking on a lesson name causes an HTML
lesson preview page to be shown in the frame at the right. The data about which page to
show is also stored in a database table and is accessed by the servlet that constitutes the
delivery mechanism for this user interface. The student begins the selected lesson by
clicking on a Start button below the lesson preview frame.

The Breadboard Circuit View

One of the servlets composes the page for the Breadboard Circuit View. The frame
includes the version of the simulation that most closely represents the circuit being deah
with. As we see in Figure 11, the breadboard view can contain fairly realistic
representations of a switch, a light, a battery, and a multimeter. The student can
manipulate the various parts of the breadboard simulation and immediately see the
results. In the top right comer of the frame is some general text describing what is being
represented and what can be done with the simulation. To the left of that text, is a box of
text that is more specific. It might discuss a particular aspect of the simulation, such as
what you can expect to see if you perform various manipulations. Finally, in the lower
right corner of the frame is an exercise that requires the student to respond to various
questions, usually after performing some operation with the simulation. The table in this
section is a new feature developed with this contract. A box with a white background
indicates that the simulation has at some time since this exercise began been in a state
that would provide the student with enough data to answer the question related to that
box. In the example shown, the box represents the question "When the Switch Position is
Open, what is the state of the Light?". As the student manipulates the switch and the
multimeter, other boxes become white, indicating that the student should be able to
answer that portion of the question. When a student selects a white box, an interface
opens for the student to enter his or her answer to that box's question, and that answer
gets inserted into the box. When all boxes have been filled, the student clicks the 'Enter'
button (not shown in this figure) to signify that he/she is ready to be evaluated. The
instructional code underlying this table question then evaluates the table as a whole, and
reports whether enough boxes have been filled in correctly.

19

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

^OTit?Chow«<S«liwl»tA»*tot»»3«A1^fiin<ntrffe^^ ^

tjbssssv Sehenmtic <Sc'8eai:y HfW-To Chi>oss Ij?w«v

Tilis lesson covers the fimdamentals of electrical circuits. You should remenaber
(be following important pobts I

• A cirrtat consists of a power source connected to aload, usually through
a switch in such a way as to prox-ide a complete path for cunent fiow

• V/hen Uie circuit is opet) or incoinpiete, the vollaice iffovided by tiie
power source is balanced by a potential difEerence across flie g^ in the
circuit as reTuired *^y KVL Potentials on the negaliye side of the gap
are atthe battery's negative pctentjal Fctenhals on the positive side sf
the gap are at the battery's pojitwe potential

We have constructed this simple circuit on a breadboard so fliat you can see
how It behaves You can operate the 5v^>. by cScking on it You can silso
tne 'Sise vott,sisis and mitas-jre wnerits. imd sneasjirB remtjiniiKS the
rrulttflieter.

ITie Baerdses pane hap specific siiggestiotis for svoiking with this drcuil

MM mwwuMUMnta, UMWult tiM 'Hov^o'
raaanane*. o^n tIM kwlleh mnd OSMMSV*
Ms* tmmp. TlM» mmmmurm Vf eurrwnl and
ttw vowiam mp»mmati In «w ttabi*.
M»|M>t ttw •K|MrSm«nt wHh ttw siwMch

UaM

En-ai

gpJI

Switeh ftMltjon

Figure 11. The Breadboard Circuit Interface

The Visualization View

The same servlet that composes the Breadboard Circuit View also composes the
VisuaUzation View. This is done when a'VisuaUzation' button is selected. Two text
boxes at the top of the window serve the same basic function that they do for the
Breadboard Circuit View; the right hand one gives general information about the view,
and the left hand one gives more specific information, depending on how far along the
student is in the exercise. The bottom left box contains an iRides simulation, but this one
is less realistic and more abstract. Also it can include pieces that don't exist in the real
world, but which can contribute to student understanding by giving the user opportunities
to interact with a simulation-based visualization. An exercise is provided to the student
that the student can complete by carrying out mini-experiments in the simulation view.

Problem Set Lessons

A Problem Set Lesson consists of a set of questions that the student is expected to
answer. In the problem set lessons there are three types of problem questions: "Fill-in"
(text and numeric), "radio buttons", and "check box". The problem data is expressed as a
plain text (ascii) file, and is formatted such that each question is contained in a "Question
Definition Section" consisting of a "Question Definition Line" followed by a number of
varying format "Sub-Question Definition" lines, one such line per sub-question. In
addition, a "hinting" mechanism is supported. Problem Set lessons are handled with
servlet-based Dynamic HTML, and were implemented without using any of the standard
iRides components.

20

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

The Adaptive Glossary

As the student moves through instructional material, he/she is introduced to various
terms. The Adaptive Glossary is a current snapshot of terms introduced in the current
lesson as well as all terms introduced in all previously visited lessons. The glossary is
comprised of three main components. The Lesson T erms view (upper left view of Figure
12, labeled "Lesson Terms"), the All Terms view (lower left of Figure 12, labeled "All
Terms"), and the Term Definition view (center view of Figure 12). The glossary is
comprised of HTML, created dynamically and delivered via a Java servlet embedded
within a web server. The servlet constructs the page through a series of interactions with
a relational database containing links to glossary definition text, glossary-lesson
relationships, and current and past lessons visited by the student. When redrawn, the
glossary servlet queries the database for the current student and lesson. With the current
lesson, the servlet then queries the database for a list of all terms introduced by that
lesson. The Lesson Terms view is created from this list. To build the All Terms view, the
servlet queries the database for a list of all previously visited lessons by the current
student, and then this list is used in another query to determine all previously introduced
glossary terms. Clicking on a term from either term view initiates the creation and display
of the last view, the Term Definition view. The servlet, notified of the request to view a
particular term queries the database, using the selected term, for a link to the HTML page
containing the desired term definition.

3 Jmi(Xi»0»«M»iii"T*ke.*maflSa«Al*O*»ntrfS»»*i*Swii^^

J^S2S^L $c|^^6^osgr?

IHs Jcsjoft cvieti the fijRdaffientals of dccsncal circuits If ou should remembef |
the foBowmg jmportant pomtf

Wc caB tfab diagram a wgi]alaati"ii becauje it inaltes it easy to see tfae
mipottant circuit qiiaotsaf s gi>teaiggs and ri-n^tas.

11 in red points at lower voltages are]
colors, there is a wote^J
al di5f re nee bewcen points of the

A ptiwer SDurte is source of electrical energy Power sources have (at
least) two terminals, aid provide a boleElial 4Srrenee between the two.
DC or ^onstanl-voitwte power Eoxtttes jirovide a constant potenlud
di£&rence. "Ihc potential inference between the terminals of AC power
sources fluctuates in a cyclical ^hton

Figure 12. The Adaptive Glossary Interface

The Procedure Glossary

In addition to introducing terms, lessons introduce various procedures. The Procedure
Glossary is a current view of all procedures introduced up to the time the glossary is

21

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

redisplayed. The glossary is comprised of HTML, created dynamically and delivered via
a Java Servlet embedded within a web server. The Procedure Glossary is very similar in
design and functionality to the Adaptive Glossary, with the difference being the nature of
the data residing in the relational database.

The Circuit Simulations

The set of progressively more complex circuits to be used in Halff s design can be viewed
as instances of one complex circuit in particular configurations. Rather than author each
of these simulations independently, we developed a single simulation, shown below in
Figure 13, that comprises the behavior of all the others. An authoring interface was
developed, using the iRides simulation language, to let authors quickly build and save
each of the required simulation variants. When authors hold down the mouse on any
active component in this circuit, a popup menu appears that allows them to select what
type of component should appear at that point. In this way, an author can quickly build a
variant of the circuit and test it for use in a lesson.

[\ maglx XV: OFF Clean 8
Vi8w Ba oqect Pen Pa«Bm PenColof FMColor Font

Type "Bi" to modify,
type "a" for simulation

'Modify node

Figure 13. The Circuit-authoring Interface

The behavior of breadboard circuits and visualizations can be driven from this underlying
circuit simulation. That is, the values that are computed for cvirrent and voltage in this
simulation can be observed by the simulation views that students actually see.

Results of the BEESIM2 Effort

During the course of this project, all the data formats were designed, and all the major
delivery mechanisms were developed and tested. Two small lessons were developed, a

22

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

circuit lesson and a problem set. The major mechanisms are now in place for the delivery
of circuit theory lesson content based on authored specification. Significant efforts would
be required, however, to develop all the planned content that could be delivered by this
system.

Papers Resulting from this Grant

Munro, A., Surmon, D., Johnson, M., Pizzini, Q., and Walker, J. (1999) An Open Architecture for
Simulation-Centered Tutors. In Lajoie, S. P. and Vivet, M., Artificial Intelligence in Education: Open
Learning Environments: New Computational Technologies to Support Learning, Exploration, and
Collaboration. Amsterdam: lOS Press, 360-367.

Munro, A., Breaux, R., Patrey, J. and Sheldon, B. (2002) Cognitive aspects of virtual environments design.
In Stanney, K. (Ed.), Handbook of Virtual Environments. Mahwah, New Jersey: Lawrence Erlbaum
Associates.

Munro, A. (in press) Teaching in the context of authored simulations. In Murray, T. (Ed.) Authoring Tools
for Advanced Technology Learning Environments: Toward cost-effective adaptive, interactive, and
intelligent educational software. Dordrecht: Kluwer.

Continued iRides Development
Status of the Software

iRides development has continued since the end of the Intranet Delivery of Simulation-
Centered Training project. This work is supported by the Future Navy Capability (FNC)
program through grant NOOO14-02-0179 to the Center for Research on Evaluation,
Standards, and Student Testing (CRESST) at UCLA. CRESST, in turn, has issued award
0070-G-CH640 to the University of Southern California. Many of the lessons of the
project covered in this final report have helped to guide continued iRides development
under FNC funding.

Completion of the iRides Debugger.

The new iRides debugger completes the design and preliminary implementation begvm in
the Intranet Delivered Simulation project. It is used by authors to understand why a
simulation is not behaving as expected, perhaps due to a mistyped rule or due to an
interaction of rules not foreseen by the author. The debug editor can be used to examine
the attribute constraints just as they are about to be evaluated and event statements just as
they are about to be executed. This interface is often used in conjunction with paused
attributes and with the simulator's Step capability, which steps through rules at the
direction of the author. Also the author can use the Step In and Step Out capabilities for
greater control over the debugging of event bodies. If the author does not want to dive
into a particular event body, the Step command is used. If the author wants to pause at
each line of the next event body, the Step In feature can be used; if no further lines within
the body of that event are of interest, the Step Out feature is used. Using the debug editor
together with pause and/or the Step command, the author can

23

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

• observe the name and the structure of the next rule to be run
• select and evaluate expressions within the body of the rule to be run next
• observe the list of names of attributes and events marked as paused
• specify which attributes or events to stop for when stepping. It is usually the case

that only a few attributes or events are 'interesting' when debugging, and it is a
waste of effort for the debug editor to pause for other items when stepping
through the simulation.

The simulation parser's treatment of comments in defined simulation events had to be
modified so that the parser's line numbering could be used by the debugger's pretty-
printing routines. This makes it possible to show the text of the event, including the
comments, and to accurately point in the debugger to each statement as it is executed in
turn by Stepping. In Figure 14, the pointing hand icon at the left indicates which line of
the iRides Event will be carried out next, when the Step button is pressed. Clicking on
Step Out would complete the entire event without stepping through the remaining
statements individually. The debugger can handle nested DoEvents (that is, nested
function calls in the iRides simulation language). In addition, pretty-print routines display
the simulation language with formatting that enhances the user's understanding of the
structure of the simulations.

gwenlBoitB .^y8JnaisSiwMauofl8le.Haiiaeaictc

BBB
View Edtt StepNems

Stej) m Step CM Stei Stou

{
if .sys.KBusSwitch.state <> "NORM"

then

iW .sys,«BusSvwteft.5(ate := "NORM";
else

.sys.ntBusSwXch.stats ?= "OFF";

I'vaktuti:

^used Attrlbiitas and Events
.sys.inBusSiNitch.toggle.HandleCllck.

Step Item

Figure 14. Debugging Window with Formatted Simulation Rules

Scalable lesson/course structures.

Challenges encountered in the VIVIDS-based BEESIM course structures helped to
motivate a more scalable approach to specifying course and lesson structure. In current
(September 2003) iRides, any lesson can incorporate any other lesson by reference. That
makes it possible to create complex hierarchical lesson/course structures with multiple

24

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

layers. Only two levels—lessons, which could have only one simulation, and courses,
which could refer to multiple lessons, but could not contain other courses. Only two
levels of pedagogical grouping were possible. Any level of pedagogical nesting is
possible in the new iRides. That gives instructional designers more flexibility, and they
don't have to learn about two completely different types of specifications: that for
courses and that for lessons.

Improved LML file structure to limit size and improve readability.

As described above in Results and Discussion, the experience of working with the
automatically exported LML lesson specifications fi-om the BEESIM lessons pointed out
the need for a more succinct representation that was easier to read and make sense of A
recent implementation has made good use of the iRides construct lesson templates. In this
approach, an LML lesson file only needs to specify certain information about each lesson
segment. During lesson delivery, the training controller uses the file together with
separate, standardized files that specify all the invariant details. As an example, the code
for a 'find object' lesson segment in VIVIDS needs to know what object the student is
supposed to find, but imless the author has specified otherwise, assorted output texts are
generated automatically, such as 'No, that is not correct. Try again.' or 'You have run out
of time.' The initial LML conversion files could be as much as 50 lines long just to
handle each simple Find Object item. However, with the use of lesson templates, the
same result can be achieved with as few as three lines:

<use href="Tfind.lml#VFind">
<setProperty name="Object" value=".Front_Panel.Power_Light."/>

</use>

The first line specifies the name of the template file that is to be used. The template file
takes care of the looping—^repetitions in case that student's first attempt is incorrect—and
all the text that will be displayed in various situations. The second line specifies the
object that is to be found. And the third line is just to close off the 'use' item. If the
author had chosen to display text other that the standard boilerplate found in the template,
(s)he could do so in the VIVIDS lesson, and this would resuh in additional 'setProperty'
lines in the LML file. By incorporating lesson templates into the iRides files dumped by
VIVIDS, those iRides files, in addition to becoming much shorter, became much more
readable.

iRides Availability

For information about accessing the iRides software and examples of iRides simulations
and lessons, contact Allen Munro, munro@,usc.edu.

25

Final Report: Intranet Delivery of Simulation-Centered Tutoring September 2003

References

Cunningham, R. E., Corbett, J. D. Bonar, J. G., 1987. Chips: a tool for developing software interfaces
interactively. Pittsburgh: Learning Research and Development Center, University of Pittsburgh.

Forbus, K., 1984. An interactive laboratory for teaching control system concepts. (Tech. Report 5511).
Cambridge, Massachusetts: Bolt Beranek and Newman Inc.

Halff, H., 2001, Design Framework for BEESIM Circuit Lessons. Personal Communication.
Hollan, J. D., Hutchins, E. L., & Weitzman, L., 1984. STEAMER: An Interactive Inspectable Simulation-based

Training System, AI Magazine^ 2.
Ingalls, D., Wallace, S., Chow, Y., Ludolph, F., & Doyle, K., 1988. Fabrik, a visual programming environment.

Proceedings OOPSLA '55.New York: ACM, 176-190.
Johnson, W.L. and J. Rickel, 1996. "Intelligent Tutoring in Virtual Environment Simulations," ITS '96

Workshop on Simulation-Based Training Technology.
Johnson, W. L., Rickel, J., Stiles, R. and Munro, A., 1998. Integrating Pedagogical Agents into Virtual

Environments. Presence.
Leler, W., 1988. Constraint programming languages: their specification and generation. Menlo Park, CA:

Addison-Wesley.
Linton, M. A., Vlissides, J. M., & Calder, P. R., 1989. Composing user interfaces with Interviews. Computer

22(2), 8-22.
Munro, A., 1994. Authoring interactive graphical models. In T. de Jong, D. M. Towne, and H. Spada (Eds.),

The Use of Computer Models for Explication, Analysis and Experiential Learning. Springer Verlag.
Munro, A. (in press) Teaching in the context of authored simulations. In Murray, T. (Ed.) Authoring tools

for advanced technology learning environments: Toward cost-effective adaptive, interactive, and
intelligent educational software. Dordrecht: Kluwer.

Munro, A., Breaux, R., Patrey, J. and Sheldon, B. 2002. Cognitive aspects of virtual environments design.
In Stanney, K. (Ed.), Handbook of Virtual Environments. Mahwah, New Jersey: Lawrence Erlbaum
Associates.

Munro, A., Johnson, M. C, Pizzini, Q. A., Surmon, D. S., Towne, D. M. and Wogulis, J. L, 1997. Authoring
Simulation-Centered Tutors with RIDES. International Journal of Artificial Intelligence in Education, 8,
284-316.

Munro, A. Johnson, M.C., Surmon, D. S., and Wogulis, J. L., 1993. Attribute-centered simulation authoring for
instruction. In the Proceedings of AI-ED '93—World Conference on Artificial Intelligence in Education.

Munro, A. and Pizzini, Q. A., 1998. VIVIDS Reference Manual, Los Angeles: Behavioral Technology Laboratories,
University of Southern California.

Munro, A., Surmon, D., Johnson, M., Pizzini, Q., and Walker, J., 1999. An Open Architecture for
Simulation-Centered Tutors. In Lajoie, S. P. and Vivet, M., Artificial Intelligence in Education: Open
Learning Environments: New Computational Technologies to Support Learning, Exploration, and
Collaboration. Amsterdam: lOS Press, 360-367.

Stiles, R., McCarthy, L., Munro, A., Pizzini, Q., Johnson, L., and Rickel, J., 1996. Virtual Environments for
Shipboard Training, Intelligent Ship Symposium, American Society of Naval Engineers, Pittsburgh PA.

Stiles, R., McCarthy, L., and Pontecorvo, M., 1995. Training studio: a virtual environment for training.
Workshop on Simulation and Interaction in Virtual Environments (SIVE95) Iowa City, IW: ACM Press.

Sutherland, I. E., 1963. Sketchpad: a man-machine graphical communication system. Proceedings of the Spring
Joint Computer Conference, 329-346.

Towne, D. M.,1977. Approximate reasoning techniques for intelligent diagnostic instruction. International
Journal of Artificial Intelligence and Education.

Towne, D. M., 1998. DIAG: Diagnostic instruction and guidance. Los Angeles: Behavioral Technology
Laboratories, University of Southern California.

Towne, D. M., 1998D/AG.- Diagnostic instruction and guidance—application guide, v. 2. .Los Angeles:
Behavioral Technology Laboratories, University of Southern California.

Vlissides, J. M., 1990 Generalized graphical object editing. Doctoral dissertation, Stanford University.
Wilde, N. & Lewis, C, 1990. Spreadsheet-based interactive graphics: from prototype to tool. In Proceedings

CHI '90, New York: Association for Computing Machinery, 153-159.

26

-'""'"'"^'"'■'■■■''''^ ''

